63,035 research outputs found

    Waves on Noncommutative Spacetimes

    Get PDF
    Waves on ``commutative'' spacetimes like R^d are elements of the commutative algebra C^0(R^d) of functions on R^d. When C^0(R^d) is deformed to a noncommutative algebra {\cal A}_\theta (R^d) with deformation parameter \theta ({\cal A}_0 (R^d) = C^0(R^d)), waves being its elements, are no longer complex-valued functions on R^d. Rules for their interpretation, such as measurement of their intensity, and energy, thus need to be stated. We address this task here. We then apply the rules to interference and diffraction for d \leq 4 and with time-space noncommutativity. Novel phenomena are encountered. Thus when the time of observation T is so brief that T \leq 2 \theta w, where w is the frequency of incident waves, no interference can be observed. For larger times, the interference pattern is deformed and depends on \frac{\theta w}{T}. It approaches the commutative pattern only when \frac{\theta w}{T} goes to 0. As an application, we discuss interference of star light due to cosmic strings.Comment: 19 pages, 5 figures, LaTeX, added references, corrected typo

    A transport coefficient: the electrical conductivity

    Full text link
    I describe the lattice determination of the electrical conductivity of the quark gluon plasma. Since this is the first extraction of a transport coefficient with a degree of control over errors, I next use this to make estimates of other transport related quantities using simple kinetic theory formulae. The resulting estimates are applied to fluctuations, ultra-soft photon spectra and the viscosity. Dimming of ultra-soft photons is exponential in the mean free path, and hence is a very sensitive probe of transport.Comment: Talk given in ICPAQGP 2005, SINP, Kolkat

    Signature of strong atom-cavity interaction on critical coupling

    Full text link
    We study a critically coupled cavity doped with resonant atoms with metamaterial slabs as mirrors. We show how resonant atom-cavity interaction can lead to a splitting of the critical coupling dip. The results are explained in terms of the frequency and lifetime splitting of the coupled system.Comment: 8 pages, 5 figure

    Heavy Quarkonium Potential Model and the 1P1{}^1P_1 State of Charmonium

    Full text link
    A theoretical explanation of the observed splittings among the P~states of charmonium is given with the use of a nonsingular potential model for heavy quarkonia. We also show that the recently observed mass difference between the center of gravity of the 3PJ{}^3P_J states and the 1P1{}^1P_1 state of ccˉc\bar{c} does not provide a direct test of the color hyperfine interaction in heavy quarkonia. Our theoretical value for the mass of the 1P1{}^1P_1 state is in agreement with the experimental result, and its E1 transition width is 341.8~keV. The mass of the ηc\eta_c' state is predicted to be 3622.3~MeV.Comment: 15 page REVTEX documen

    Interacting Quantum Topologies and the Quantum Hall Effect

    Get PDF
    The algebra of observables of planar electrons subject to a constant background magnetic field B is given by A_theta(R^2) x A_theta(R^2) the product of two mutually commuting Moyal algebras. It describes the free Hamiltonian and the guiding centre coordinates. We argue that A_theta(R^2) itself furnishes a representation space for the actions of these two Moyal algebras, and suggest physical arguments for this choice of the representation space. We give the proper setup to couple the matter fields based on A_theta(R^2) to electromagnetic fields which are described by the abelian commutative gauge group G_c(U(1)), i.e. gauge fields based on A_0(R^2). This enables us to give a manifestly gauge covariant formulation of integer quantum Hall effect (IQHE). Thus, we can view IQHE as an elementary example of interacting quantum topologies, where matter and gauge fields based on algebras A_theta^prime with different theta^prime appear. Two-particle wave functions in this approach are based on A_theta(R^2) x A_theta(R^2). We find that the full symmetry group in IQHE, which is the semi-direct product SO(2) \ltimes G_c(U(1)) acts on this tensor product using the twisted coproduct Delta_theta. Consequently, as we show, many particle sectors of each Landau level have twisted statistics. As an example, we find the twisted two particle Laughlin wave functions.Comment: 10 pages, LaTeX, Corrected typos, Published versio

    21-cm absorption from galaxies at z ~ 0.3

    Full text link
    We report the detection of 21-cm absorption from foreground galaxies towards quasars, specifically z_gal = 0.3120 towards SDSS J084957.97+510829.0 (z_qso = 0.584; Pair-I) and z_gal = 0.3714 towards SDSS J144304.53+021419.3 (z_qso = 1.82; Pair-II). In both the cases, the integrated 21-cm optical depth is consistent with the absorbing gas being a damped Lyman-\alpha (DLA) system. In the case of Pair-I, strong Na I and Ca II absorption are also detected at z_gal in the QSO spectrum. We identify an early-type galaxy at an impact parameter of b ~ 14 kpc whose photometric redshift is consistent with that of the detected metal and 21-cm absorption lines. This would be the first example of an early-type galaxy associated with an intervening 21-cm absorber. The gas detected in 21-cm and metal absorption lines in the outskirts of this luminous red galaxy could be associated with the reservoir of cold H I gas with a low level of star formation activity in the outer regions of the galaxy as reported in the literature for z ~ 0.1 early-type galaxies. In the case of Pair-II, the absorption is associated with a low surface brightness galaxy that, unlike most other known quasar-galaxy pairs (QGPs) i.e. QSO sight lines passing through disks/halos of foreground galaxies, is identified only via narrow optical emission lines detected on top of the QSO spectra. Using SDSS spectra we infer that the emission lines originate within ~ 5 kpc of the QSO sight line, and the gas has metallicity [12+O/H] ~ 8.4 and star formation rate ~ 0.7-0.8 M_sun per yr. The measured 21-cm optical depth can be reconciled with the N(H I) we derive from the measured extinction (A_V=0.6) if either the H I gas is warm or the extinction per hydrogen atom in this galaxy is much higher than the mean value of the Small Magellanic Cloud. (Abridged)Comment: 8 pages, 7 figures, 3 tables (A&A in press

    Staggered fermion matrix elements using smeared operators

    Get PDF
    We investigate the use of two kinds of staggered fermion operators, smeared and unsmeared. The smeared operators extend over a 444^4 hypercube, and tend to have smaller perturbative corrections than the corresponding unsmeared operators. We use these operators to calculate kaon weak matrix elements on quenched ensembles at β=6.0\beta=6.0, 6.2 and 6.4. Extrapolating to the continuum limit, we find BK(NDR,2GeV)=0.62±0.02(stat)±0.02(syst)B_K(NDR, 2 GeV)= 0.62\pm 0.02(stat)\pm 0.02(syst). The systematic error is dominated by the uncertainty in the matching between lattice and continuum operators due to the truncation of perturbation theory at one-loop. We do not include any estimate of the errors due to quenching or to the use of degenerate ss and dd quarks. For the ΔI=3/2\Delta I = {3/2} electromagnetic penguin operators we find B7(3/2)=0.62±0.03±0.06B_7^{(3/2)} = 0.62\pm 0.03\pm 0.06 and B8(3/2)=0.77±0.04±0.04B_8^{(3/2)} = 0.77\pm 0.04\pm 0.04. We also use the ratio of unsmeared to smeared operators to make a partially non-perturbative estimate of the renormalization of the quark mass for staggered fermions. We find that tadpole improved perturbation theory works well if the coupling is chosen to be \alpha_\MSbar(q^*=1/a).Comment: 22 pages, 1 figure, uses eps
    corecore